
www.manaraa.com

Computer Science Education: A Game to Teach Children about Programming 

by 

Xiaoxiao Wang 
 

       
 
 
 

A Thesis Presented in Partial Fulfillment  
of the Requirements for the Degree  

Master of Science  
 
 
 
 
 
 
 
 
 
 

Approved April 2017 by the 
Graduate Supervisory Committee:  

 
Brian Nelson, Chair 

 Pavan Turaga 
Erin Walker 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

ARIZONA STATE UNIVERSITY  

May 2017  



www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that  the author did not send a complete manuscript
and  there  are missing pages, these will be noted. Also, if material had  to be removed,

a note will indicate the deletion.

ProQuest

Published  by ProQuest LLC (  ). Copyright of the Dissertation is held  by the Author.

All rights reserved.
This work is protected against unauthorized copying under  Title 17, United  States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

10272845

10272845

2017



www.manaraa.com

 

 
 
 
 
 
 
 
 

i 

ABSTRACT 

 Computational thinking, the fundamental way of thinking in computer science, 

including information sourcing and problem solving behind programming, is considered 

vital to children who live in a digital era. Most of current educational games designed to 

teach children about coding either rely on external curricular materials or are too 

complicated to work well with young children. In this thesis project, Guardy, an iOS 

tower defense game, was developed to help children over 8 years old learn about and 

practice using basic concepts in programming. The game is built with the SpriteKit, a 

graphics rendering and animation infrastructure in Apple’s integrated development 

environment Xcode. It simplifies switching among different game scenes and animating 

game sprites in the development. In a typical game, a sequence of operations is arranged 

by players to destroy incoming enemy minions. Basic coding concepts like looping, 

sequencing, conditionals, and classification are integrated in different levels. In later 

levels, players are required to type in commands and put them in an order to keep playing 

the game. To reduce the difficulty of the usability testing, a method combining 

questionnaires and observation was conducted with two groups of college students who 

either have no programming experience or are familiar with coding. The results show that 

Guardy has the potential to help children learn programming and practice computational 

thinking.  

 

  



www.manaraa.com

 

 
 
 
 
 
 
 
 

ii 

DEDICATION 

To my parents and friends.  



www.manaraa.com

 

 
 
 
 
 
 
 
 

iii 

ACKNOWLEDGMENTS 

 First of all, I would like to thank my thesis advisor Dr. Brian Nelson for the 

continuous support and patience. His knowledge and experience in the field have inspired 

me a lot in this study. Then, I would like to express my gratitude to my committee 

members Dr. Pavan Turaga and Dr. Erin Walker for meetings and suggestions to improve 

the quality of this work. Special thanks to my friends who participated in the usability 

testing of the game. 

  



www.manaraa.com

 

 
 
 
 
 
 
 
 

iv 

TABLE OF CONTENTS 

Page 

LIST OF TABLES ........................................................................................................... viii 

LIST OF FIGURES ........................................................................................................... ix 

CHAPTER 

     1     INTRODUCTION .................................................................................................. 1 

          1.1 Overview ........................................................................................................... 1 

          1.2 Objective ........................................................................................................... 3 

          1.3 Challenges ......................................................................................................... 3 

          1.3.1 The Genre of Game .................................................................................. 3 

          1.3.2 The Playability for Children .................................................................... 3 

          1.3.3 Typing in the Game ................................................................................. 4 

          1.4 Contributions ..................................................................................................... 4 

     2     RELATED WORKS ............................................................................................... 5 

          2.1 The Foos ............................................................................................................ 5 

          2.2 Scratch ............................................................................................................... 6 

        2.3 CodeCombat ..................................................................................................... 8 

        2.4 Summary ......................................................................................................... 10 

     3      GAME DESIGN .................................................................................................. 11 

          3.1 Overview ......................................................................................................... 11 

        3.2 Conceptions ..................................................................................................... 11 

        3.3 Gameplay ........................................................................................................ 13 

          3.3.1 Play Flow ............................................................................................... 13 



www.manaraa.com

 

 
 
 
 
 
 
 
 

v 

CHAPTER                                                                         Page 

          3.3.2 Challenge Structure ................................................................................ 15 

          3.3.3 Game Progression .................................................................................. 15 

          3.4 Mechanics ........................................................................................................ 16 

          3.4.1 Physics and Movements ......................................................................... 16 

          3.4.2 Conflicts ................................................................................................. 16 

          3.4.3 Communications .................................................................................... 16 

          3.4.4 Economy ................................................................................................ 17 

          3.4.5 Items ....................................................................................................... 17 

          3.4.6 Minions .................................................................................................. 17 

          3.5 Levels .............................................................................................................. 18 

          3.5.1 Basics and Fireball ................................................................................. 18 

          3.5.2 Ice Spell ................................................................................................. 19 

          3.5.3 Loops ...................................................................................................... 19 

          3.5.4 High-level Minions ................................................................................ 19 

          3.5.5 Towers .................................................................................................... 20 

          3.5.6 Starbomb ................................................................................................ 20 

          3.5.7 Conditionals ........................................................................................... 20 

          3.5.8 Practice Levels ....................................................................................... 21 

          3.5.9 Typing .................................................................................................... 21 

          3.6 Interface ........................................................................................................... 21 

          3.6.1 Visual System ........................................................................................ 21 

          3.6.2 Music and Sound Effects ....................................................................... 23 



www.manaraa.com

 

 
 
 
 
 
 
 
 

vi 

CHAPTER                                                                         Page 

          3.6.3 Help System ........................................................................................... 23 

          3.7 Visual Design .................................................................................................. 24 

     4     GAME DEVELOPMENT .................................................................................... 25 

          4.1 Overview ......................................................................................................... 25 

        4.2 Modeling ......................................................................................................... 25 

          4.2.1 MVC Design Pattern .............................................................................. 25 

          4.2.2 Class Diagram/Screen Frames ............................................................... 27 

          4.3 Implementation ................................................................................................ 28 

          4.3.1 Data Storage ........................................................................................... 28 

          4.3.2 Game Objects ......................................................................................... 29 

          4.3.3 Command Parser .................................................................................... 30 

          4.3.4 Tower Functions .................................................................................... 30 

          4.3.5 Collisions ............................................................................................... 31 

          4.3.6 Text Input ............................................................................................... 32 

          4.4 Testing ............................................................................................................. 32 

          4.4.1 Unit Testing ........................................................................................... 32 

          4.4.2 Black Box Testing .................................................................................. 33 

          4.5 Deployment ..................................................................................................... 34 

     5     USABILITY TESTING ........................................................................................ 35 

          5.1 Overview ......................................................................................................... 35 

        5.2 Subjects ........................................................................................................... 36 

        5.3 Process ............................................................................................................ 36 



www.manaraa.com

 

 
 
 
 
 
 
 
 

vii 

CHAPTER                                                                         Page 

        5.4 Question Sample ............................................................................................. 37 

          5.5 Data Collection ................................................................................................ 38 

     6     RESULTS AND DISCUSSION ........................................................................... 40 

          6.1 Performance .................................................................................................... 40 

        6.2 Open Questions ............................................................................................... 41 

        6.3 Observation ..................................................................................................... 41 

     7     CONCLUSION AND FUTURE WORK ............................................................. 43 

REFERENCES ................................................................................................................. 44 

APPENDIX 

     A     ANSWERS TO OPEN QUESTIONS .................................................................. 47 

 
 



www.manaraa.com

 

 
 
 
 
 
 
 
 

viii 

LIST OF TABLES 

Table                                                                         Page 

5.1 Questions on the Questionnaire .......................................................................... 37 

5.2 Observation Topics ............................................................................................. 38  

 
  



www.manaraa.com

 

 
 
 
 
 
 
 
 

ix 

 
 

LIST OF FIGURES 

Figure                                                                          Page 

2.1 A Typical Game Scene in The Foos ..................................................................... 5 

2.2 User Interface in Scratch ....................................................................................... 7 

2.3 A Game Scene in CodeCombat ............................................................................ 9 

3.1 Basic Play Flow in Guardy ................................................................................. 14 

3.2 Enemies in Guardy .............................................................................................. 18 

3.3 Game Scene in Guardy ....................................................................................... 23 

4.1 MVC Design Pattern ........................................................................................... 26 

4.2 Class Diagram/Screen Frames of Guardy ........................................................... 27 

4.3 Part of Declaration of Level Information ............................................................ 29 

4.4 Tree Diagram of Nodes in Guardy ...................................................................... 29 

4.5 Part of Declaration of Tower Node ..................................................................... 31 

4.6 Part of didBeginContact Function ...................................................................... 31 

4.7 Code of Adding Observers .................................................................................. 32 

4.8 Test Cases of XCTest .......................................................................................... 33 

5.1 Bar Chart of the Answers to Questions 1-8 ........................................................ 39 

   

 

  

  

 



www.manaraa.com

 

 
 
 
 
 
 
 
 

1 

CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

 Due to the huge demand for it in our society, computer science has become a vital 

part of science, technology, engineering, and mathematics (STEM) learning [1]. 

Computational thinking (CT), the fundamental way of thinking and problem solving in 

computer science, requires thinking at multiple levels of abstraction such as consideration 

of available resources and efficiency [2]. It involves the process of understanding and 

analyzing problems, heuristic reasoning, designing systems, solving problems, and 

evaluating solutions by drawing on the concepts fundamental to computer science [2]. 

Because CT is ingrained in everyday lives, it becomes critical and beneficial to everyone, 

not just computer scientists [2]. Since first proposed by Jeanette Wing in 2006, CT 

education, especially for K-12 students, has been studied by a growing community of 

educators and computer science experts [3]. Based on their research, it is wildly accepted 

that learning and practicing programming is a better approach to learn CT than only 

completing introductory activities [3]. The problem-solving, information-sourcing, 

project management and algorithms in programming are significant to introducing CT to 

children [4]. Furthermore, programming offers a chance for students to express 

themselves and participate in social networks [5]. Through the process of computer 

programs being created, used, repurposed and shared, student programmers increase their 

capacity to participate in today’s digital society [5]. 



www.manaraa.com

 

 
 
 
 
 
 
 
 

2 

 Because of the growing attention paid to CT, more and more students are taking 

computer science AP courses in high school [6]. However, whether programming courses 

should be added as a requirement for all students in the already packed K-12 curricula 

remains a question [3]. While computer science education for undergraduates and above 

has matured, for K-12 students it is still in the early stages of development in the US [7]. 

Even though a group of movements [8] have been focusing on teaching programming to 

children, it still lacks the strategy and solid research foundation necessary to bring CT to 

all students [7]. 

 In such a situation, teaching programming through games seems to be a feasible 

approach. Games have a set of rules in the virtual worlds and give the player an identity 

or a role to play in these worlds [9]. At some point, games become simulations that easily 

involve players and teach them the information they need to know. The capability of 

games expands the possibility of education in various ways due to the limitlessness of 

digital virtual worlds. Furthermore, games are considered as an immensely entertaining 

and attractive interactive technology that helps form affinity groups among players [10]. 

Besides the educational potential it has, teaching programming through games does not 

require any instant change in the current K-12 education system since it can be conducted 

outside ‘normal’ school curricula. 

 While the outcomes of game-based education and whether it is appropriate for 

learning programming remain controversial in our society [11], some coding-based 

games have been developed for K-12 students. However, the influence these games have 

on children’s after-school life and their understanding of programming still needs to be 

studied. 



www.manaraa.com

 

 
 
 
 
 
 
 
 

3 

1.2 Objective 

 The objective of this thesis is to design and implement an iOS tower defense 

game to teach children about programming. The game is designed to introduce 

programming basics to chidren aged 8 or above as well as elder students without coding 

experience. The focus of game relies on general conceptions and principles in coding 

instead of teaching a specific programming language. 

 

1.3 Challenges 

 Several challenges to be addressed to build such a game are discussed below. 

1.3.1 The Genre of Game 

 Most of coding games described in the literature were developed based on early 

programming languages such as LOGO [12]. Due to this fact, the contents of these games 

were designed to have students use a sequence of directions to move a game character 

[12]. Conversely, the genre of the game developed for this thesis is defined as tower 

defense. Teaching students how to integrate coding into this specific kind of game genre 

becomes a challenge. 

1.3.2 The Playability for Children 

 The main purpose of teaching through games is to get children more involved in 

learning than they are through the current education system. Played in after-school time, 

this game should be designed to be engaging enough to encourage children to play it. The 

visual style, level settings, mission progress and affinity groups need to be taken into 

consideration. 



www.manaraa.com

 

 
 
 
 
 
 
 
 

4 

1.3.3 Typing in the Game 

 Typing code and interacting with the computer are vital in real programming 

experience. The balance between integrating actual typing of code into the game to 

support learning, and avoiding so much text entry that the game becomes less fun 

becomes another challenge. 

 

1.4 Contributions 

 This thesis draws from different knowledge bases. It involves study in game 

design, programming instruction and visual design work. This thesis is considered as an 

attempt to experiment with approaches to helping children learn CT. It will be a 

beneficial example for reaching out to kids with computer science. 

  



www.manaraa.com

 

 
 
 
 
 
 
 
 

5 

CHAPTER TWO 

RELATED WORKS 

 

2.1 The Foos 

The Foos is a platform designed by codeSpark to help children make their own games 

and learn to code through playing them [13] and its target players are kids at any age 

above four. In a typical game scene, the player is required to drag various command 

modules from the bottom toolbar. By arranging commands in a certain sequence and 

running them, the player can make the character move around to collect gems and 

eventually arrive at the target destination for a given level. The basic process of finishing 

a level involves analyzing the requirements, coming up with a solution, sequencing the 

command modules to implement the solution, running the sequence to test the result, and 

fixing the problems happen in the running time. The modules of the game include 

movements in four basic directions, jumping, looping, and other functional commands 

such as throwing a firecracker to clear obstacles in the way.  

Figure 2.1 A Typical Game Scene in The Foos 



www.manaraa.com

 

 
 
 
 
 
 
 
 

6 

 The Foos has set a good example for finding a balance between a fun game and a 

game that teaches both CT and programming concepts. The process of a game is a simple 

simulation of writing a program without typing code since CT is well integrated in it. 

Command modules that the player uses through the game provide an introduction to 

variables and functions in coding. At the same time, the level setting, cartoon style, and 

no-text tutorials of The Foos make it approachable and entertaining for children. Besides 

the core gameplay elements, The Foos also provides game modes through which the 

player can build custom game levels and share them with others. This platform not only 

enables children to get involved in social networks under a free environment of 

interactions, but also offers them a chance to think like a game designer and programmer.  

 While The Foos has done a good job in building an easy-to-play game about 

coding, the real teaching relies on its corresponding curriculum [14]. In its materials, a 

formal classroom setting is required for activities like group discussions to conduct the 

teaching [14]. In such case, whether The Foos curriculum can be added into current 

education system and how much the game itself helps children learn programming still 

need to be explored in studies. 

 

2.2 Scratch 

 Scratch is a simple visual programming language developed by MIT Media Lab. 

It aims to help children easily create and share their own interactive digital projects such 

as video games, animations, newsletters [15]. With different shaped programming blocks 

in Scratch’s library, children are able to play with materials like sounds and images to 

build their own works. Specifically, programming is done by snapping commands 



www.manaraa.com

 

 
 
 
 
 
 
 
 

7 

(sometimes with parameters) together to move various objects on the background [16]. 

Similar to the way people play with LEGO bricks, “Scratchers” design and build their 

own projects freely with these components.  

Figure 2.2 User Interface in Scratch 

 Since it came out, Scratch has been studied and tested by different groups of 

education researchers. The common opinion among these studies is that Scratch helps 

elementary students develop programming concepts and engage problem solving [17]. 

Like real programming, Scratch offers children a chance to think as a designer and 

creator by expressing themselves through projects they build. The way of adding up 

command blocks and parameters also leads directly to actual coding structures. By 

providing an open environment of graphical command blocks, Scratch excels at helping 

children transition to real computer programming. Likewise, Scratch also provides a 

platform where children can share their works with each other. Discussion forums and 



www.manaraa.com

 

 
 
 
 
 
 
 
 

8 

online activities have played significant roles in promoting people to communicate and 

participate in social networks. 

 On the other hand, being a tool to learn programming (rather than a game), 

Scratch may not appeal to children as much as The Foos. Research shows that students 

tend to find options and commands too complicated in Scratch, which causes difficulty in 

the process of building projects [17]. Moreover, some students are expecting “something 

cooler” in Scratch considering the visual effects [17]. Therefore, the future plan for 

Scratch team is to focus on lowering the technical floor and making it more approachable 

for kids [15]. 

 

2.3 CodeCombat 

 CodeCombat is a 2D browser-based game that teaches people about coding at 

various levels of skill [18]. In a typical CodeCombat game, the player needs to plan 

ahead to help the game character collect all the gems and move to final destination. With 

multiple commands provided based on the items the character owns, the player has to 

write the corresponding code in the right window to use them. Once the RUN button is 

hit, the character will execute the sequence of commands such as moving in a specified 

direction or attacking a specific enemy (in this case the name of enemy is required as a 

parameter). As the player makes progress in the game, more programming concepts like 

loops and conditions are introduced. Besides the learning aspect, CodeCombat is also 

considered as a role-playing game as the user plays a hero adventuring through different 

levels and switch from various scenes [19]. 



www.manaraa.com

 

 
 
 
 
 
 
 
 

9 

Figure 2.3 A Game Scene in CodeCombat 

 With the combination of role-playing and typing code, CodeCombat is a useful 

tool for children to learn and practice programming. On the right side of the game 

interface, all the parameters and functions are stated clearly in text, which is basically a 

simplified real coding window. Through this approach, CodeCombat is able to help its 

players improve their understanding of programming. Furthermore, the fantasy backstory 

and settings of CodeCombat appeal to a young generation of players [20]. Research 

shows most participants find the visual design and cartoon style of CodeCombat easy and 

engaging in the game [21].  

 However, when it comes to coding education for K-12 students, CodeCombat 

may be a little too specialized. CodeCombat makes players pick a specific coding 

language such as Javascript or Python before they start the game. Because of this design 

approach, the game narrows the education of CT down to learning a certain programming 

language, which might not be appropriate for children, and may focus too strongly on 

programming a specific language over CT. Other than that, excessive text input may also 

cause kids at the younger age lose patience with the game. 

  



www.manaraa.com

 

 
 
 
 
 
 
 
 

10 

2.4 Summary 

 Besides the three learning tools described above, other coding games such as 

Lightbot [22] and Cargo-Bot [23] have been studied. Based on the experience of these 

games and analysis of them, several things were considered in the game design of this 

thesis.  

l Visual design and character settings should be friendly to children as in The 

Foos.  

l Symbolic and graphic expressions should be used to avoid excessive text-

based explanation and text input in the game interface. 

l Parameters should be added into coding while working to ensure the 

complexity is not set too high. Game progress is supposed to move forward 

gradually with guidance through tutorials. 

l A sufficient, but not excessive, amount of text should be used to represent 

code structures like in CodeCombat; but the text pattern is not supposed to 

indicate any specific programming languages. 

l Various game elements such as maps and items should be added into the 

game world to keep the player highly involved. 

l A reward system should be designed to encourage the player to come up 

with optimized solutions during every game. 

  



www.manaraa.com

 

 
 
 
 
 
 
 
 

11 

CHAPTER THREE 

GAME DESIGN 

 

3.1 Overview 

 Guardy is an iOS tower defense game that teaches children about programming. 

The aim of this game is to help the player learn about CT and basic coding structures 

through playing the game. The target audience of this game is children aged eight and 

above, but it may also be beneficial to adults who have no programming background.  

Like most tower defense games, the player views a preview of incoming enemies 

and plans ahead with a sequence of commands to defeat the enemies in each level of the 

game. Once the player has created a defensive plan and hits the play button, the attack of 

minions begins and the player’s commands are executed to destroy them. The goal of the 

game is to defend attacks and prevent a certain number of minions from passing. During 

the game, the player’s goal is to come up with solutions to stopping the minions, using 

series of different commands similar to coding functions. In this way, children get to 

practice problem solving and CT as they play various levels of game. 

 

3.2 Conceptions 

 Overall, a tower defense game itself is similar to the CT process in programming. 

The preview of incoming enemies and existing commands has resemblance to the 

requirements for a coding project and available resources in the coding environment. 

From thinking through the given problem to designing a plan to defend against the attack, 

the process of successfully playing the game is analogous to coming up with a solution to 



www.manaraa.com

 

 
 
 
 
 
 
 
 

12 

a specific programming problem with CT. Moreover, running the commands to test if a 

defense plan works is the same as running a program to test the result of coding. Through 

readjusting the defense plan based on feedback, the player gets to practice recursive 

thinking and efficiency in CT. 

Specifically in Guardy, there are a few other CT conceptions behind the game. 

l Programming can be conceptualized as a battle. The game helps players get to 

know that coding is not just creating a stack of commands but also a fun way to 

engage in CT and its problem-solving process.  

l The commands the player uses represent functions in programming. Through 

the game, the player needs to learn how to arrange these commands to complete 

the level. The sequence of command lines indicates the structure of coding and 

designing systems in CT. 

l Differences among minions relate to the concepts of classes and objects. 

Classification is a vital part of CT and in this game the player has to recognize 

different types of minions and use corresponding commands to deal with them. 

l Loops are implemented in the game. Loops are helpful when repeated work is 

needed in programming. In the same way, loops are provided in the game as a 

tool to run the same operation for multiple times. 

l Conditional variations are considered. Just like loops, conditionals used in 

coding are integrated in this game. In the later phases of Guardy, unknown 

minions are added into the preview window as question marks. The type of 

these enemies can change under different conditions. Thus, the player can 



www.manaraa.com

 

 
 
 
 
 
 
 
 

13 

practice nondeterminism and decision-making in CT by covering all the 

possible types of unknown minions.  

l A carefully considered amount of typing gives children a closer look at 

programming. In the final several levels of the game, the player is required to 

type the command lines instead of clicking on the buttons. Typing the code into 

the program is necessary for coding and the simplified typing process helps 

teach children the rigor of implementing a solution in CT. 

l Feedback is given in the game to help players optimize their solutions. Besides 

the result of planned commands after tapping the play button, the players are 

also notified if their solutions are ill-structured. For example, players will see a 

syntax error warning if they use loops function incorrectly. In this way, the 

player gets to learn CT through receiving feedback and evaluating solutions.  

 

3.3 Gameplay 

 In total, Guardy has thirty game levels. Once one level is complete, the next level 

will be unlocked to be played.  

3.3.1 Play Flow 

 At the beginning of each level, a preview window showing incoming enemies is 

displayed on the top left of the scene as in Figure 3.1, so that the player can see the 

specific sequence of minions in the level. Meanwhile, available commands to deal with 

these minions are provided as buttons in the bottom toolbar. Based on that, the player is 

required to analyze the minions and find a plan with different commands in an order to 

destroy all enemies. When the player taps a command button, text of that command will 



www.manaraa.com

 

 
 
 
 
 
 
 
 

14 

be written down to the command list window on the top right, showing the current 

sequence of commands he/she has selected. Once the player finishes adding and 

arranging the commands in the list, he/she can tap the start button to release the minions 

and they will appear from the left and move toward the character, following the path in 

the map. At the same time, the commands are executed as minions come out so that the 

player can see real-time feedback as the battle unfolds on the map. In case the result of 

selected commands does not turn out well, once the start button is tapped, it will be 

replaced by a stop button that can stop the running process and allow the player to 

rearrange commands in the list. With the start button and the stop button, players can 

always test and debug their commands to find the best solution to eliminate all the 

enemies. If players let a certain number of minions pass through during the game, they 

will fail the level and have to replay it. Otherwise, they get reward coins as the level is 

completed, and are able to move to the next level. 

 

Figure 3.1 Basic Play Flow in Guardy 



www.manaraa.com

 

 
 
 
 
 
 
 
 

15 

3.3.2 Challenge Structure 

 The performance of the player is rated on three components—destroying all 

enemies, the character’s remaining health points, and the number of used commands. In 

each level of Guardy, the player starts with four health points. If a minion passes through 

and hits the character, the player loses one health point and the minion will be removed. 

When all the minions are eliminated by commands, the level is complete and the player 

receives one star. If the player manages to maintain all four health points until the end of 

level, one more star will be rewarded. The third star will be given if the player completes 

the level with a minimum number of commands. Every star earned means more coins for 

the player. Because of this rewards system, the ultimate mission for the player is to come 

up with a solution consists of the fewest number of commands needed to eliminate every 

enemy minion without the character getting hit.  

3.3.3 Game Progression 

 As the levels progress, the difficulty and complexity of game rise too. Not only do 

scenes and potential minion paths change, but also minions and defensive tools get more 

complicated in the later levels. For example, besides basic minions that can be destroyed 

by fire or ice spells, there are higher-level minions that can take multiple shots and 

colored minions can only be killed by correspondingly colored towers. For tools, loops 

that repeat the same operation multiple times and conditionals that run different 

commands under various situations will be available as players unlock more levels. 

 



www.manaraa.com

 

 
 
 
 
 
 
 
 

16 

3.4 Mechanics 

3.4.1 Physics and Movements 

 In Guardy world, movements are strictly controlled by moving objects straight 

from one location to another with no gravity, outside force or friction applied in the 

system.  Minions and spells involving movement (such as the fireball) are programmed to 

follow a certain path with a set of coordinates in every level. Similarly, tower bullets are 

shot out by being moved in a straight line from the position of tower to the target enemy. 

3.4.2 Conflicts 

 Objects in the game scene are assigned with different masks. Whenever two 

objects overlap on the screen, one can identify the other with their masks to see if they 

would cause a conflict. Once a conflict happens, masks are used again to detect which 

object needs to be removed or have a clash effect applied to it. For example, when an 

enemy object crashes into the player character in the game, conflict between them will be 

detected and the enemy will disappear while the character will lose one health point. 

3.4.3 Communications 

 The player’s input methods include buttons and typing. Buttons are for navigating 

among different scenes and for functional features such as buying items from the store. In 

early phases of game levels, spells and tools also appear in the form of buttons. 

Meanwhile, text input is only available in the last seven levels of the game. In these 

levels, the player is supposed to type commands with the keyboard while buttons are 

unavailable. 

 On the other hand, graphics, text, and sound effects are used to output information 

to the player. Specifically, the visual look of every button is designed to indicate its 



www.manaraa.com

 

 
 
 
 
 
 
 
 

17 

function and reduce the amount of text in the game. However, warning signs and 

explanation windows include text to ensure that the player has a good understanding of 

the game goals and functions. In addition, different sounds are played in various 

scenarios to match the messages displayed. 

3.4.4 Economy 

 Golden coins are the currency used in the game. Whenever the player completes a 

level, a certain number of coins will be rewarded. The number of coins varies based on 

the number of rating stars the player gets at end of the level. Besides that, additional coins 

will be added to the account if the level is completed for the first time or a pet (details in 

the next paragraph) is used in a battle. With these coins, the player can purchase different 

kinds of items in the store to improve the experience of battles. 

3.4.5 Items 

 Three kinds of items—weapons, armor, and pets are added into the game to 

increase player engagement. A weapon improves the speed of spell casting of the 

character while armor gives the character one more health point. When the character is 

battling with a pet, he/she gains extra coins when the level is completed.  

 At the beginning of the game, most of items are locked in the store. As the player 

completes levels and moves forward, more expensive items will be unlocked and become 

available in the store. Once the player buys the item in the store, it can be equipped or 

unequipped in the character scene. 

3.4.6 Minions 

 There are seven kinds of enemy minions in Guardy. At first, two kinds of basic 

minions include a dark blue one that can only be killed by a fireball and a dark green one 



www.manaraa.com

 

 
 
 
 
 
 
 
 

18 

that can only be destroyed by an ice spell. In addition, there are two kinds of high-level 

minions in (light blue and light green colors) that move faster than basic ones. Both of 

them can be destroyed by fireballs or ice spells, but the blue one takes two shots while the 

green one takes three shots. Finally, there are specialty minions in three colors—red, gray 

and brown. These enemies can only be eliminated by the correspondingly colored towers, 

which can detect and shoot color-matched minions automatically. 

Figure 3.2 Enemies in Guardy 

 In addition, when conditionals are introduced in the game, there will be question 

marks in the preview window of coming enemies. In the case, question marks will 

become different kinds of minions based on the value of the condition when they are 

released.  

 

3.5 Levels 

 In Guardy, levels are distributed based on how programming concepts are 

introduced to players. From basic operations to complicated commands, players gradually 

learn the way these components are arranged together to solve the problems. 

3.5.1 Basics and Fireball 

 In the first two levels, the player is supposed to get familiar with what a typical 

game scene looks like. Basic operations introduced in these two levels include clicking 



www.manaraa.com

 

 
 
 
 
 
 
 
 

19 

the preview window, adding a fireball spell to the list of player commands, deleting the 

last command, releasing minions and running commands, and stopping the commands. 

Meanwhile, to ensure the simplicity, only fireballs and dark blue minions are included in 

these two levels. 

3.5.2 Ice Spell 

 Level three and four will introduce dark green minions to the game. The 

corresponding spell for them is an ice spell, which is also available in the button bar at 

the same time. For these two levels, players are able to continue playing around with 

basic operations while getting used to the ice spell command. 

3.5.3 Loops 

 Loops will show up at levels five and six as a pair of parentheses. In Guardy, 

loops only have five options—times the commands inside them can be repeated (two, 

three, four, five or nine). In these two levels, easy loop patterns are integrated in the 

sequence of enemy minions to help the player learn loops. With loops, players are 

required to conduct more thinking than previous levels to find the repeat in the problem. 

3.5.4 High-level Minions 

 Light blue enemies and light green enemies are introduced in levels seven and 

eight respectively. As mentioned before, these two kinds of minions need multiple shots 

of either the fireball or ice spell in order to be destroyed. The appearance of them 

increases the difficulty for the player to find the pattern in an enemy sequence and use 

loops. Thus, levels nine and ten don’t bring in any new concepts but only help players 

practice previous operations. 



www.manaraa.com

 

 
 
 
 
 
 
 
 

20 

3.5.5 Towers 

 From level eleven to level fourteen, towers and their corresponding enemies are 

added into the game. In each level, there are only a limited number of spots for building 

towers and one tower is good enough to destroy all the minions that match a given 

tower’s color. The player needs to plan ahead to decide which towers should be used in 

the level. At same time, the mix of tower minions and other minions raises the difficulty 

of finding loop patterns. 

3.5.6 Starbomb 

 When too many high-level minions appear in the enemy sequence, the spell 

casting of the character might not be fast enough. In levels fifteen and sixteen, star bomb 

is introduced to slow down the speed of present enemies on the map. In these two levels, 

players need to figure out how to integrate star bomb into loops to gain more time for 

their spell castings. 

3.5.7 Conditionals 

 In real programming languages, conditionals are variables that change values 

under different situations. In Guardy, question marks appear in the enemy sequence as 

unknown variables in levels seventeen and eighteen. They can be one kind of basic 

minions or tower minions. The possibilities of their type will be displayed next to the 

preview window. With that information, the player needs to cover all situations with the 

provided “if” parentheses. Just like coding, when the condition is not met, the commands 

inside the parentheses will be skipped. Otherwise, they will be executed. The introduction 

of conditionals brings in factors to encourage the player to conduct comprehensive CT. 



www.manaraa.com

 

 
 
 
 
 
 
 
 

21 

3.5.8 Practice Levels 

 After all the commands available in Guardy are introduced, later levels are just for 

players to practice the problem solving process. From levels nineteen to twenty-two, 

different minions are mixed with question marks in the enemy sequence and the number 

of minions also increases. The solutions to these levels are open, thus players have to 

master the use of tools and analyze the problems to come up with the best plan.   

3.5.9 Typing 

 From levels twenty-three to thirty, buttons are replaced by a text field where the 

player can input text with the keyboard. Available command samples are displayed in the 

toolbar so players know what to type for a specific function. The difficulty of the levels 

and tools provided are the same as those of practice levels. With the change of the input 

form, the player is able to grab a deeper understanding of programming as real coding 

involves a lot of typing. 

 

3.6 Interface 

3.6.1 Visual System 

 The visual system of Guardy is divided into six scenes—main menu, store scene, 

character scene, information scene, level selection scene, and game scene. Main menu is 

the beginning scene of the game and it has four buttons leading to other four scenes 

except game scene. Store scene displays items available in the store and the number of 

coins the player has. All purchases are conducted in this scene with buttons and 

selections. Character scene shows players the items they have and also provides a 

preview window for them to put on or take off items for the character. Information scene 



www.manaraa.com

 

 
 
 
 
 
 
 
 

22 

has three pages to explain the basics of the game and one page to credit the people or 

resources involved in the project. Level select scene displays thirty levels and their 

ratings. Every level in the level scene is a button that leads to its game scene when it is 

clicked. 

 Game scene consists of a game map and its path, the character, and four heads-up 

displays—enemy window, toolbar, command window, and game over window. Enemy 

window on the left top of scene displays the sequence of incoming minions in this level 

and it can be hidden or shown with a click during the game. When the question marks 

appear in the level, the possibilities of the question mark are also attached to the enemy 

window. Toolbar, located at the bottom the scene, contains all the available command 

buttons in the game. When a text field replaces buttons in later levels, toolbar will 

remove the buttons and display command samples. On the top right of the scene, 

command window displays the commands the player has picked. It also has a menu 

button which leads back to level selection scene and a play button to release enemy 

minions. After the play button is clicked, it turns into a stop button that can stop the 

running process of enemies. In addition, on the top right of the command window, there 

is a label displaying the number of coins the player has. Game over window will pop up 

in the middle of the scene when the player completes the level or fails. It displays the 

ratings of the level and bonus coins. Meanwhile, the game over window also has three 

buttons with which players can go back to the level scene, replay the level, or play the 

next level. 



www.manaraa.com

 

 
 
 
 
 
 
 
 

23 

Figure 3.3 Game Scene in Guardy 

3.6.2 Music and Sound Effects 

 In Guardy, a piece of background music is played in all scenes except the game 

scene. Sound effects are also added to different operations including button clicks, 

warnings, explosions, putting on items, buying items, casting spells, enemies getting hit, 

completing a level, and failing a level.  

3.6.3 Help System 

 Tutorials, warning signs, and information scene are integrated to help the player 

quickly get familiar with the game. Tutorials are displayed before the game starts when a 

new game conception is introduced in the level. They appear in the form of simple 

illustrations with arrows and some text. Warning signs are implemented in various 

occasions; such as when loop or if parentheses have a syntax error or the player types in 

wrong commands. Information scene, as mentioned, gives players a simple overview of 

enemies and items. 

 



www.manaraa.com

 

 
 
 
 
 
 
 
 

24 

3.7 Visual Design 

 Because the target audience of Guardy is children, the intended style of visual 

design is a colorful and simple cartoon. A jungle theme user interface is applied in all 

scenes to keep the elements vivid and consistent. Besides that, the character and enemies 

are also distinguished by bright colors to help children easily classify them. To avoid 

excessive text in the game, graphics are also used in buttons to indicate their functions. 

Finally, items and game maps are also designed in 2D cartoon style to keep all elements 

compatible. 

  



www.manaraa.com

 

 
 
 
 
 
 
 
 

25 

CHAPTER FOUR 

GAME DEVELOPMENT 

 

4.1 Overview 

 As an iOS game, Guardy is developed on Apple’s integrated development 

environment Xcode. The programming language Swift and game framework SpriteKit 

are used for the game. 

 Swift, Apple’s own programming language, is made specifically for iOS and 

Macs. Apple has been improving its performance since it came out, thus it became the 

most suitable language to write iOS apps [24]. Swift’s simplified syntax makes code 

concise and efficient and its Automatic Reference Counting tracks and manages the app’s 

memory usage [25]. At the same time, its type safety and new variable type—optionals— 

also ensures that errors can be caught and fixed early in the development process [26]. 

 SpriteKit is Apple’s built-in framework for developing 2D games. It is an 

infrastructure that renders graphics and animates sprites in the game. Besides its support 

operations and actions for sprite nodes, SpriteKit also has an integrated library to 

simulate physics in the scene [27]. According to the requirements and purpose of Guardy, 

SpriteKit has the tools needed to develop this game. 

 

4.2 Modeling 

4.2.1 MVC Design Pattern 

 The Model-View-Controller (MVC) pattern is the architectural pattern Apple 

recommends for iOS development. In short, this pattern divides objects into three 



www.manaraa.com

 

 
 
 
 
 
 
 
 

26 

layers—model, view, and controller. The model layer encapsulates the data specific to 

the app and handles various operations to process the data [28]. The view layer, as its 

name indicates, is in charge of displaying views to the user. Because of its visibility to 

users, user interactions with the app are in fact with the view layer [29]. In the MVC 

pattern, the view layer normally does not process operations or logics but only displays 

data from the model layer. However, consistency is required for the view objects because 

users often reuse and reconfigure the view in apps [28]. Therefore, most of time the view 

layer is decoupled from the model layer and a controller layer is brought in to coordinate 

these two layers. Controller layer communicates between view objects and model objects 

through interpreting users’ actions in the view layer and conducting operations on the 

data of the model layer. Besides that, controller objects also perform tasks like setup and 

arranging the order of operations. 

Figure 4.1 MVC Design Pattern 

 Specifically in Guardy, MVC pattern is applied in the early stages of design. Data 

including level settings, ratings, items, number of coins, and the character is stored in the 

model layer for the use in the game. In the view layer, a UIView and multiple SKScene 



www.manaraa.com

 

 
 
 
 
 
 
 
 

27 

classes are used to present the view to players and display nodes like buttons and labels. 

Controller objects are integrated in all the classes to decide how to react to the player’s 

actions in the game. For example, when the player clicks a button in the view to add an 

item, the controller gets the action through functions touchesBegan and touchesEnded. 

Then, it plays the sound for the operation in the model, changes the data of that item, and 

stores it back to the model. 

4.2.2 Class Diagram/Screen Frames 

 In SpriteKit, SKScene is used to represent a scene of contents, therefore each 

functional scene is implemented as a class in Guardy. But due to the special structure of 

SKScene and features in SpriteKit, a traditional class diagram might not be suitable for 

modeling the game. Thus a combination of class diagram and screen frames is used in the 

design stage to model Guardy.   

Figure 4.2 Class Diagram/Screen Frames of Guardy 

 



www.manaraa.com

 

 
 
 
 
 
 
 
 

28 

4.3 Implementation 

 Based on the modeling, the Guardy world is implemented with functions in 

different parts including data storage, connections, actions, etc. In this thesis, only the 

implementation of several core functions is discussed below. 

4.3.1 Data Storage 

 Data that needs to be stored in the game includes level settings, level information, 

items, and the number of coins. Level settings consist of enemy sequence, tower spots, 

coordinates of the path, number of buttons, and other requirements in each level. All the 

settings are translated into dictionaries and stored in property list files of the project. 

Before a level starts, game scene will access the file, load the corresponding level setting 

and set up the view based on it.  

 Level information indicates if the level is locked and the ratings of the level. Data 

of level information and items exists as two arrays of level objects and item objects 

respectively. Values of their elements are encoded with different keys and stored under 

the document directory of the game. When the data is needed in the game, the controller 

will decode files and get the values with the keys. In the same way, the number of coins 

is encoded and stores through the path in NSUserDefaults. 

 

 

 

 

 

 



www.manaraa.com

 

 
 
 
 
 
 
 
 

29 

Figure 4.3 Part of Declaration of Level Information 

4.3.2 Game Objects 

 In SpriteKit, every object in the game is represented as an SKNode. According to 

the varieties of game objects in Guardy, they are created as multiple subclasses of 

SKNode. Each subclass has its own functions and also inherits or overrides functions 

from their parent classes. Figure 4.4 indicates relationships among these object classes. 

Figure 4.4 Tree Diagram of Nodes in Guardy 



www.manaraa.com

 

 
 
 
 
 
 
 
 

30 

4.3.3 Command Parser 

 During every game, the player inputs a list of commands that are stored in an 

array of strings. Before these commands being run, loops and conditionals inside them 

need to be parsed. The process of parsing includes three steps in total. At first, the syntax 

of commands should be examined to ensure every pair of parentheses of loops or 

conditionals is closed and in the right order. Secondly, to avoid unnecessary computation 

in the program, conditionals are parsed first. When the value of the condition is false, 

commands inside the conditional parentheses will be removed by array operations. 

Finally, loops will be translated into repeated operations and inserted back to the array. 

With the parsed array of commands, the program will go through them one by one and 

execute the corresponding functions in the scene. 

4.3.4 Tower Functions 

 Towers in Guardy detect their enemy minions and shoot them automatically. Both 

towers and their minions are tagged with an integer to indicate their type. When an 

enemy enters in a tower’s range and their tags match, the tower will append the enemy 

into its shooting sequence. For every enemy in the tower’s shooting sequence, the tower 

will rotate to the enemy, shoot a projectile to it and then remove it from the sequence. 

These actions of towers are implemented with SKActions, which are used to rotate and 

move nodes in the scene. On the other hand, when the enemy leaves the shooting range, 

the tower will just remove it from its shooting sequence.  

 

 

 



www.manaraa.com

 

 
 
 
 
 
 
 
 

31 

Figure 4.5 Part of Declaration of Tower Node 

4.3.5 Collisions 

 Collisions between objects in Guardy are simulated by the use of SKPhysicsBody. 

For every object in the map, it is assigned a certain sized shape and a mask. When two 

shapes overlap in the view, a collision happens if their masks match as well. Function 

didBeginContact is called automatically whenever a collision happens, so inside the 

function, physical contacts of the objects will be handled. Incidents like when a bullet hits 

an enemy or an enemy crashes into the character are all simulated by collisions.  

Figure 4.6 Part of didBeginContact Function 



www.manaraa.com

 

 
 
 
 
 
 
 
 

32 

4.3.6 Text Input 

 Since SpriteKit does not provide any tool for text input, typing has to be 

implemented with a UITextField. As an interface of UIKit, the text field is added into the 

scene as a subview of the view controller. The elements of text field such as font and text 

color can be easily set with its well-declared attributes, but its location becomes a 

problem when the keyboard pops up and blocks the view of it. Therefore, the whole view 

should be moved up to make the text field above the keyboard when the player is typing. 

To solve this problem, the default center of built-in class NSNotificationCenter is brought 

in. It is able to add observers for events like KeyboardWillShow and KeyboardWillHide 

in this case. When these events happen, functions will be called to adjust the position of 

the view. 

Figure 4.7 Code of Adding Observers 

 

4.4 Testing 

 The goal of testing is to verify and validate if a piece of software is built based on 

requirement specifications. In this regard, the testing process is carried out in steps below. 

4.4.1 Unit Testing 

 To understand more about the internal workings of the game and ensure 

operations are performed as expected, unit testing is adopted to test several functions in 



www.manaraa.com

 

 
 
 
 
 
 
 
 

33 

the game scene. XCTest is the framework provided in Xcode to write units test for apps. 

Its simplicity and tight integration into Xcode development environment make it easy to 

test units in Guardy. Specifically, test cases are written for testing the command parser 

and other functions. When the test cases fail, bugs will be detected by the program, and 

the corresponding code can be fixed right away. 

Figure 4.8 Test Cases of XCTest 

4.4.2 Black Box Testing 

 Contrary to unit testing, black box testing, also known as behavioral testing, 

focuses on inputs and outputs of the game instead of its internal structures. For Guardy, 

black box testing is run based on the requirement specifications and a set of use case 

scenarios to simulate the user experience. A playable prototype of Gurady is downloaded 

on a device to conduct black box testing. To ensure functions are complete and meet the 

requirements, normal operations are performed first on the game to detect errors. After 

that, the prototype is sent to several end-users to test exceptional operations. When errors 

occur during the black box testing, they are reported and related classes and functions 

will be checked manually to fix the code. 

 Several behavioral problems of Guardy were detected in the black box testing. 

One scenario was after an end-user added commands to the full command list, tapping 



www.manaraa.com

 

 
 
 
 
 
 
 
 

34 

the undo button did not remove the last command. This issue was fixed later by 

redesigning the array of command list to ensure it would not append more commands 

when the list is full. Another case was after an end-user typed a wrong command in the 

text field, the whole command was removed so all the text had to be typed in again. This 

problem was solved by keeping the text of wrong input in the text field to be fixed by the 

player. Besides these, other issues like the incorrect display of the number of coins were 

fixed in their related code functions. 

 

4.5 Deployment 

 As an iOS game, Guardy is designed to run on any iOS device. But because 

settings and sizes of iOS devices vary, an iPad Mini 2 was chosen to deploy the game for 

usability testing. With the features in Xcode, the game can be launched on the device 

through provisioning, registering the developer’s information, and transferring files of the 

project to the device. 

 

 

 

  



www.manaraa.com

 

 
 
 
 
 
 
 
 

35 

CHAPTER FIVE 

USABILITY TESTING 

 

5.1 Overview 

 For games and software, usability testing is always a useful and straightforward 

way to receive feedback and test if they are designed well for the target audience. But 

traditional methods for testing productivity software may not be a good choice for games 

because they are essentially different [30]. Moreover, other than regular games, Guardy 

aims to engage players across learning activities around programming. For such an 

educational game, the usability testing should focus more on learning effectiveness, user 

engagement, and player interactions with the game itself [31]. Activities involved in the 

usability testing include planning, identifying the usability model, preparing the session, 

selecting subjects, conducting the test, and analyzing the data [32]. 

 In terms of the specific method of testing in this work, a combination of 

observational analysis and questionnaire was adopted. During the testing process, 

subjects are allowed to interact with the prototype while the investigator observes how 

they figure out the way to play the game, and the type of problem solving they go through 

during their playing [33]. According to the observation and side notes the investigator 

takes, issues affecting the user’s interactions can be detected directly. The questionnaire 

method, similar to traditional methods, is more based on evaluating the performance of 

game. In the survey, subjects need to rate the attributes of the game like difficulty or 

visual design, and answer open questions about their opinions toward the game. With the 



www.manaraa.com

 

 
 
 
 
 
 
 
 

36 

model involving both observation and questionnaires, the usability of Guardy can be 

tested in a comprehensive way. 

 

5.2 Subjects 

 Even though the target audience of Guardy is children over eight years old, to 

reduce the complexity, the usability testing was conducted with 10 college students. 

Research has shown that five users are enough to discover most usability problems with 

software [34], but due to the educational purpose of Guardy, additional subjects were 

added into the testing process to determine the educational impact on programming. The 

10 subjects were divided into two groups—students who barely have any programming 

experience and those who are familiar with coding. Each of the 10 subjects played 

through the game and looked for usability errors meanwhile the programming impact of 

the game could be indicated through comparison of two groups’ reactions. 

 

5.3 Process 

 During this study, each subject took part in a roughly 30-minute usability testing 

session individually. At first, they went over the information scene, the store scene, and 

the character scene of Guardy on the device to get an overview of the game. Then, 

subjects were asked to play the game from level one and vocalize their thinking process 

in every level. At the same time, the investigator observed the subject’s behaviors and 

wrote down notes about their behaviors. During the subject’s playing, a few practice 

levels were skipped over to reduce the time of the session. After completing all the levels 

that introduce new conceptions and some practice levels, each subject was asked to rate 



www.manaraa.com

 

 
 
 
 
 
 
 
 

37 

the performance of Guardy and give opinions on the questionnaire to end the session. At 

last, notes from the observation and answers to the questionnaire were processed and 

organized for data analysis. 

 

5.4 Question Sample 

 As mentioned above, the questionnaire includes rating the performance of Guardy 

and open questions about programming. Meanwhile, the observer of the test also has a set 

of topics to focus on during the observation. 

Table 5.1 Questions on the Questionnaire 

Questionnaire of Guardy 

Q1 Rate the difficulty of understanding how to play the game. (1-10) 

Q2 Rate the difficulty of understanding enemy minions. (1-10) 

Q3 Rate the difficulty of understanding the store and item system. (1-10) 

Q4 Rate how well the game introduces new programming concepts. (1-10) 

Q5 Rate the difficulty of playing the game. (1-10) 

Q6 Rate the visual design of the game. (1-10) 

Q7 Rate the sound effects of the game. (1-10) 

Q8 Rate the pleasure of playing the game. (1-10) 

Q9 How would you describe programming before playing the game? 



www.manaraa.com

 

 
 
 
 
 
 
 
 

38 

Questionnaire of Guardy 

Q10 How would you describe programming after playing the game? 

Q11 What kind of problem solving did you go through while playing the 
game? 

Q12 Is this game suitable for children over 8 years old to play? 

Q13 Would this game help children over 8 years old learn programming? 

  

Table 5.2 Observation Topics 

Observation Topics 

Q1 Has the subject finished the levels on time? 

Q2 Has every level been completed in the most efficient way?  

Q3 Has the subject found any trouble in one or more levels?  

Q4 Based on vocalized reactions, has the subject conducted computational 
thinking? 

Q5 Other notes. 

 

 

5.5 Data Collection 

 Information collected is also divided into two groups as the subjects are. Group 1 

consists of subjects who have no programming experience and Group 2 consists of those 



www.manaraa.com

 

 
 
 
 
 
 
 
 

39 

who already have a good understanding of programming. From questions 1 to 8 on the 

questionnaire, answers of subjects are averaged in two groups to rate the performance of 

Guardy as shown in Figure 5.1. Meanwhile, subjects’ answers to questions 9 to 13 are 

attached in Appendix A, and the result of observations will be discussed in the next 

chapter. 

Figure 5.1 Bar Chart of the Answers to Questions 1-8  

 

  

0

2.5

5

7.5

10

12.5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Group 1 Group 2



www.manaraa.com

 

 
 
 
 
 
 
 
 

40 

CHAPTER SIX 

RESULTS AND DISCUSSION 

 With data collected from the usability testing, a fairly comprehensive evaluation 

of Guardy can be given through analysis. In general, three parts of the data need to be 

discussed in this work. 

 

6.1 Performance 

 Bar chart in Figure 5.1 shows the testing results of Guardy’s performance. In 

general, two groups’ answers to these questions are almost identical except for Q5. 

Regarding to the difficulty of the game, Group 1 has an average rating of 7 while the 

mean of ratings from Group 2 is 4. The obvious difference between 7 and 4 indicates 

level settings of Guardy do require a programming-like mind to solve problems while the 

general high ratings show that current levels are challenging for both groups to some 

extent. 

 Other than Q5, ratings of other questions demonstrate that Guardy is fairly good 

as a game. Based on the ratings of Q1 to Q3, both two groups of subjects do not have 

much trouble understanding the basics of the game. In Q4, the ratings are all above 8, 

which demonstrate that Guardy achieves its purpose of introducing programming 

concepts to players. As for Q6 to Q8, Guardy is considered a high-quality game among 

all subjects. 

 



www.manaraa.com

 

 
 
 
 
 
 
 
 

41 

6.2 Open Questions 

 As shown in Appedix A, through the comparison of answers to Q9 and Q10, most 

subjects received a better understanding of programming after playing Guardy. 

Specifically, for subjects in Group 1, programming was abstract to them before but later, 

they were able to use words like “input and output” and “patterns” to talk about coding. 

Even for Group 2, subjects seemed to describe programming in more details after their 

playing. 

 For Q11, all subjects mentioned that during their problem solving they conducted 

significant steps of CT such as looping, sequencing, and mathematical thinking. But in 

general, subjects from Group 2 described their CT in a more comprehensive way as they 

talked about efficiency and complexity of the solution. 

 In terms of Q12 and Q13, most subjects were positive that Guardy could engage 

children over 8 to play and learn about programming. However, some of them also 

showed concerns about whether the game was too difficult for children. But in general, 

most of subjects agreed that Guardy makes programming more approachable for children 

and people without programming experience. 

 

6.3 Observation 

 As the supplement of questionnaire in this usability testing, observation was 

mostly focused on subjects’ behaviors during playing the game. First of all, observations 

reveal that the amount of time subjects spent on levels does not completely depend on the 

amount of programming experience they have. Some subjects from Group 1 completed 

levels surprisingly fast and the reason behind it, as they described, might be that they are 



www.manaraa.com

 

 
 
 
 
 
 
 
 

42 

familiar with math and logic practices in daily life. Secondly, some of subjects in both 

groups were able to come up with simpler ways than the standard solution to solve a 

couple of problems. In this case, Guardy does provide them with a relatively open 

environment to think of other possibilities.  

Finally, even though all the subjects had not heard of the concept of CT, based on 

their verbalized thoughts, all of them had conducted CT while playing the game. When 

they looked at the preview of incoming enemies and counted the number of hits, they 

were understanding and analyzing the problem. When they tapped buttons to write down 

the list of commands, they were expressing their plans and forming solutions. Moreover, 

once the battle started on the map, they got to evaluate their solutions according to the 

feedback and fix errors to improve the performance. Overall, basic steps of CT process 

such as prefetching, computing, decision-making, algorithms, backtracking etc. were 

conducted during their playing. 

  



www.manaraa.com

 

 
 
 
 
 
 
 
 

43 

CHAPTER SEVEN 

CONCLUSION AND FUTURE WORK 

 Guardy is an iOS tower defense game that has the potential to teach children over 

8 years old about programming. It simplifies the structures and methods in real coding 

and brings them into game battles to make them appealing to children. However, user 

testing revealed that concerns about the difficulty of the game existed for players with 

little or no programming background, and thus some changes should be made to level 

settings and the introduction of loops and conditionals. Furthermore, the typing system 

and command syntax should be simplified to engage children even in the later levels. 

Overall, Guardy has presented a feasible way to help children learn CT and problem 

solving outside the school curricula system.  

 For future work, besides the problems found from usability testing, several 

solutions to extend the impact of Guardy can be implemented. More characters and 

storylines can be added to the game to form a complete system that keeps children more 

involved and interested. Meanwhile, network functions should be considered in the future 

development to create a community for children to share their solutions or ideas. In 

addition, more programming conceptions like parameters can be integrated when more 

levels are designed in the game.  



www.manaraa.com

 

 
 
 
 
 
 
 
 

44 

REFERENCES 

[1] Levis, Phillip. "Education and Job Opportunities in STEM, 2008." Education and Job 
Opportunities in STEM, 2008. February 2, 2012. Accessed April 03, 2017. 
http://csl.stanford.edu/~pal/ed/. 
 
[2] Wing, Jeannette M. "Computational thinking." Communications of the ACM 49, no. 
3 (2006): 33. doi:10.1145/1118178.1118215. 
 
[3] Grover, S., and R. Pea. "Computational Thinking in K-12: A Review of the State of 
the Field." Educational Researcher 42, no. 1 (2013): 38-43. 
doi:10.3102/0013189x12463051. 
 
[4] Hosford, Grant. "Do Your Kids Need to Learn to Code? Yes! But Not for the Reasons 
You Think." The Huffington Post. May 29, 2015. Accessed April 03, 2017. 
http://www.huffingtonpost.com/smart-parents/do-your-kids-need-to-
lear_b_7473058.html. 
 
[5] Kafai, Yasmin B., and Quinn Burke. Connected code: why children need to learn 
programming. Cambridge, MA: The MIT Press, 2016. 
 
[6] "AP Program Participation and Performance Data 2015 – Research – The College 
Board." Research. Accessed April 03, 2017. 
https://research.collegeboard.org/programs/ap/data/archived/ap-2015. 
 
[7] Lynch, Tom Liam. "Saving Computer Science Education from Itself." Medium. 
December 01, 2015. Accessed April 03, 2017. 
https://medium.com/@tomliamlynch/saving-computer- science-education-from-itself-
3bd3e3c300a2#.yrl4rrx75. 
 
[8] "About Us." Code.org. Accessed April 03, 2017. https://code.org/about. 
 
[9] Shaffer, David Williamson. "Epistemology: The Debating Game." In How Computer 
Games Help Children Learn, 23-40. New York: Palgrave Macmillan, 2006. 
 
[10] Gee, James Paul. "The Social Mind: How Do You Get Your Corpse Back After 
You've Died?" In What Video Games Have to Teach Us about Learning and Literacy, 
188-209. New York: Palgrave Macmillan, 2007. 
 
[11] Dörner, Ralf, Stefan Göbel, Michael Kickmeier-Rust, Maic Masuch, and Katharina 
Zweig. Entertainment Computing and Serious Games: International GI-Dagstuhl 
Seminar 15283, Dagstuhl Castle, Germany, July 5-10, 2015, Revised Selected Papers. 
Cham: Springer International Publishing, 2016. 
 
[12] "Alternatives to Scratch." Scratch Wiki. Accessed April 03, 2017. 
https://wiki.scratch.mit.edu/wiki/Alternatives_to_Scratch. 



www.manaraa.com

 

 
 
 
 
 
 
 
 

45 

[13] "CodeSpark Academy with The Foos." Accessed April 03, 2017. 
http://thefoos.com/. 
 
[14] The Foos Curriculum-Introduction to Computer Science Grades K-5. codeSpark. 
May, 2016.  Accessed April 03, 2017. 
 http://thefoos.com/wp-content/uploads/2016/05/Hour-of-Code-Curriculum.pdf 
 
[15] Resnick, Mitchel, Brian Silverman, Yasmin Kafai, John Maloney, Andrés Monroy-
Hernández, Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric 
Rosenbaum, and Jay Silver. "Scratch." Communications of the ACM 52, no. 11 (2009): 
60. doi:10.1145/1592761.1592779. 
 
[16] Maloney, John, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn 
Eastmond. "The Scratch Programming Language and Environment." ACM Transactions 
on Computing Education 10, no. 4 (2010): 1-15. doi:10.1145/1868358.1868363. 
 
[17] Filiz KALELIOĞLU, Yasemin GÜLBAHAR, The Effects of Teaching 
Programming via Scratch on Problem Solving Skills: A Discussion from Learners’ 
Perspective. Informatics in Education, 2014, Vol. 13, No. 1, 33–50. 
 
[18] Project Proposal for PyTeacher, Eugene de Beste, Mark Grivainis, University of 
Cape Town. Accessed April 03, 2017. 
https://people.cs.uct.ac.za/~dbseug001/res/docs/proposal.pdf. 
 
[19] Gube, Jacob. "5 Games That Teach You How to Code." Six Revisions. September 
30, 2015. Accessed April 03, 2017. http://sixrevisions.com/resources/games-that-teach-
how-to-code/. 
 
[20] Kumar, Deepak. "Digital playgrounds for early computing education." ACM 
Inroads 5, no. 1 (2014): 20-21. doi:10.1145/2568195.2568200. 
 
[21] Orehovacki, Tihomir, and Snjezana Babic. "Evaluating the quality of games 
designed for learning programming by students with different educational background: 
An empirical study." 2015 38th International Convention on Information and 
Communication Technology, Electronics and Microelectronics (MIPRO), 2015. 
doi:10.1109/mipro.2015.7160414. 
 
[22] "Lightbot." Lightbot. Accessed April 03, 2017. https://lightbot.com/resources.html. 
 
[23] "Cargo-Bot – iPad." Accessed April 03, 2017. https://twolivesleft.com/CargoBot/. 
 
[24] Solt, Paul. "Swift vs. Objective-C: 10 reasons the future favors Swift." InfoWorld. 
May 11, 2015. Accessed April 03, 2017.  
http://www.infoworld.com/article/2920333/mobile- development/swift-vs-objective-c-
10-reasons-the-future-favors-swift.html. 



www.manaraa.com

 

 
 
 
 
 
 
 
 

46 

[25] Mathias, Matthew, and John Gallagher. Swift Programming: the Big Nerd Ranch 
Guide. Atlanta, GA: Big Nerd Ranch, 2016. 
 
[26] "The Swift Programming Language (Swift 3.1): The Basics." The Swift 
Programming Language (Swift 3.1): The Basics. March 27, 2017. Accessed April 03, 
2017. 
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Progr
amming_Language/TheBasics.html#//apple_ref/doc/uid/TP40014097-CH5-ID309. 
 
[27] "Apple Game Frameworks Category." Ray Wenderlich. Accessed April 03, 2017. 
https://www.raywenderlich.com/category/apple-game-frameworks. 
 
[28] "Cocoa Core Competencies." Model-View-Controller. October 21, 2015. Accessed 
April 03, 2017. 
https://developer.apple.com/library/content/documentation/General/Conceptual/DevPedia
-CocoaCore/MVC.html. 
 
[29] "Model-View-Controller (MVC) in iOS: A Modern Approach." Ray Wenderlich. 
Accessed April 03, 2017. https://www.raywenderlich.com/132662/mvc-in-ios-a-modern-
approach. 
 
[30] Moreno-Ger, Pablo, Javier Torrente, Yichuan Grace Hsieh, and William T. Lester. 
"Usability Testing for Serious Games: Making Informed Design Decisions with User 
Data." Advances in Human-Computer Interaction 2012 (2012): 1-13. 
doi:10.1155/2012/369637. 
 
[31] S. de Freitas and M. Oliver, “How can exploratory learning with games and 
simulations within the curriculum be most effectively evaluated?” Computers and 
Education, vol. 46, no. 3, pp. 249–264, 2006.  
 
[32] Diah, Norizan Mat, Marina Ismail, Suzana Ahmad, and Mohd Khairulnizam Md 
Dahari. "Usability testing for educational computer game using observation 
method." 2010 International Conference on Information Retrieval & Knowledge 
Management (CAMP), 2010. doi:10.1109/infrkm.2010.5466926. 
 
[33] M. Macleod and R. Rengger, “The development of DRUM: a software tool for 
video-assisted usability evaluation,” in Proceedings of the 5th International Conference 
on Human- Computer Interaction (HCI ’93), pp. 293–309, August 1993. 
 
[34] R. A. Virzi, “Refining the test phase of usability evaluation: how many subjects is 
enough?” Human Factors, vol. 34, no. 4, pp. 457–468, 1992. 
 
[35] Salen, Katie, and Eric Zimmerman. Rules of play: game design fundamentals. 
Cambridge, Mass.: The MIT Press, 2010. 
 
 



www.manaraa.com

 

 
 
 
 
 
 
 
 

47 

APPENDIX A 

ANSWERS TO OPEN QUESTIONS 
  



www.manaraa.com

 

 
 
 
 
 
 
 
 

48 

Questions: 

Q9: How would you describe programming before playing the game? 

Q10: How would you describe programming after playing Guardy? 

Q11: What kind of problem solving did you go through while playing the game? 

Q12: Is this game suitable for children over 8 years old to play? 

Q13: Would this game help children over 8 years old learn programming? 

 

Answers: 

Subject 1 (Group 1) 

A9: Writing commands to make something function properly. 

A10: Writing commands to complete specific tasks. 

A11: Trying to figure out how to consolidate the repetition of shooting. 

A12: Yes. 

A13: For first ten levels, yes. 

 

Subject 2 (Group 1) 

A9: Orchestrating a system to be used on a computer. 

A10: A system with inputs and outputs. 

A11: Math and patterns. 

A12: Yes. 

A13: Yes. 

 

 



www.manaraa.com

 

 
 
 
 
 
 
 
 

49 

Subject 3 (Group 1) 

A9: Creating some software on the computer. 

A10: Starting by ground, building up a process, each thing is connected to each other. 

A11: Recognizing enemies and a lot of math. 

A12: I think so. 

A13: It might be hard for younger ones. 

 

Subject 4 (Group 1) 

A9: Sounds like complicated, time-consuming, boring and difficult work. 

A10: Not that hard as I thought it would be. It might be a little fun to program. 

A11: Logic thinking, looking for patterns, making sure the solution works. 

A12: Yes, except the typing part. Children might lose patience with it. 

A13: Yes, but the part without typing might not leave an impression to kids. 

 

Subject 5 (Group 1) 

A9: Writing code to get machine to do stuff. 

A10: Understanding problems, and trying to get the computer to do stuff in the most 

efficient way. 

A11: Figuring out how many hits are needed and how to loop them. 

A12: Yes, levels might be hard but the game is simple to play. 

A13: Yes. 

 

 



www.manaraa.com

 

 
 
 
 
 
 
 
 

50 

Subject 6 (Group 2) 

A9: A process contains certain functions and types. 

A10: Same as the last question. 

A11: Looping, balancing between slowing down enemies and attacking them, which 

indicates complexity and accuracy in real programming. 

A12: Yes. 

A13: Yes. 

 

Subject 7 (Group 2) 

A9: Using the logics to solve problems. 

A10: Not hard, but it requires a lot of thinking. 

A11: Figuring out the most efficient way to write code with least command lines. 

A12: Yes. 

A13: Yes, it would help a lot. This game makes loop and if statements more 

approachable. I wish I had this game before I learned Matlab. 

 

Subject 8 (Group 2) 

A9: Finding solutions to solve problems. 

A10: Finding the most efficient ways to solve the problem. 

A11: Understanding the limit of requirements and finding patterns. 

A12: Yes. 

A13: Yes. This game involves syntax, patterns and using them to construct algorithms, 

which makes coding more approachable to people. 



www.manaraa.com

 

 
 
 
 
 
 
 
 

51 

Subject 9 (Group 2) 

A9: Logics. 

A10: Making decisions, repeating to perform tasks. 

A11: Understanding constraints, planning, coming up with the solution, classifying 

minions, and finding patterns. 

A12: Yes. 

A13: Yes. 

 

Subject 10 (Group 2) 

A9: Different languages the computer uses to dictate their actions. 

A10: Series of instructions used to dictate the computer’s actions. 

A11: Assessing what the issue is, thinking of what’s available to use, making choices, 

testing it out and iterating decisions. 

A12: Yes. 

A13: Yes. One good thing about this game is children will learn logic and sequencing 

easily instead of any specific programming language. 

 

 

 

 

 


